
Writing Documentation Using
DocBook

A Crash Course

David Rugge
davidrugge@mindspring.com

Mark Galassi
rosalia@galassi.org

Éric Bischoff
ebischoff@nerim.net

Writing Documentation Using DocBook: A Crash Course
by David Rugge, Mark Galassi, and Éric Bischoff

Copyright © 1997-2006 David Rugge, Mark Galassi, Éric Bischoff

This document is a first tutorial on how to write documentation in DocBook.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover texts, and with no

Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Table of Contents
1. Introduction ...1

1.1. About this Booklet...1
1.2. Why DocBook?..2
1.3. Your World View..3
1.4. Markup based on content...4

2. Getting started..5

2.1. Presentation of the Tools..5
2.2. The Old Way: the DocBook-tools..5
2.3. The New Way: XSLTProc and FOP...7
2.4. My First DocBook File..8
2.5. Introducing the Style Sheets..9

3. Basic notions..11

3.1. Anatomy of a DocBook Tag..11
3.2. The Structure of a DocBook File...11

4. The Document Type Declaration...14

4.1. Using Entities for Shared Text...14
4.2. Using Entities to Include Other files..15
4.3. Identifying files with formal public IDs...15
4.4. Using Marked Sections to Handle Conditional Content..17

5. Meta Information ..19

6. Lists..21

6.1. The simplelist...21
6.2. The itemizedlist..22
6.3. The orderedlist...22
6.4. The variablelist...23
6.5. The segmentedlist...24
6.6. qandaset..25
6.7. Procedures..25

7. Tables...27

8. Graphics...29

9. Links...32

10. Describing the Application’s Interface...33

10.1. Examples..33
10.2. GUI Interface Elements..34
10.3. Command Line Elements...36
10.4. Describing an API..38

11. Miscellaneous Useful Tags..40

11.1. Labelling Tags..40
11.2. Formatting Tags..40
11.3. Warnings, Tips, and Notes...40

12. Where to Go Next...41

12.1. DocBook Resources...41

A. Licence..42

A.1. Free Documentation Licence..42

iii

B. Emacs PSGML mode tips..50

Glossary...52

iv

List of Tables
7-1. Mouse Mileage..28

v

Chapter 1. Introduction

1.1. About this Booklet

This booklet was meant as a tutorial that can give you an introduction on how to use all the power
and effectiveness of DocBook. It aims at getting you introduced to this matter in the shortest delay,
hence then name of "Crash-course to DocBook".

Even if you have never used either DocBook or other markup languages (like LinuxDoc) before, you
should be able to become proficient in it just by reading through this guide and using the online
(http://www.oasis-open.org/docbook/documentation/reference/html/docbook.html) or the paper
(http://www.oreilly.com/catalog/docbook/index.html)version of [DocBook - The Definitive Guide]
published by O’Reilly & Associates.

Note: Please note that this crash course is designed to be used along with, not instead of, the
DocBook Reference. There are a number of cases where it is much easier to refer to the
reference rather than trying to rehash what it already covers. Use this guide to understand what
DocBook is about and to have a general overview on how to use those tags.

This tutorial will teach you enough DocBook to write basic documentation. You will learn:

• What DocBook is about

• How to get the DocBook-Tools up and running

• The format of a DocBook tag

• How to structure your documents properly

• How to use lists and tables to organize data

• How to describe GUI elements and Unix Commands

• How to include graphics in your documentation

• How to link to URL’s and create cross-references

In appendix, one can find a short description of the Emacs psgml mode.

This material comes from the fusion of three documents:

• the "Introduction to DocBook" by Mark Galassi

• the "KDE crash-course to DocBook" by David Rugge

• parts of Eric Bischoff’s tutorial about DocBook

Many parts of this document were borrowed from the "DocBook 3.0 Reference" by Eve Maler of
ArborText, Inc. and Terry Allen of Fujitsu Software Corporation. The parts of this document that

1

Chapter 1. Introduction

were borrowed from the Reference are Copyright © 1992, 1993,1994, 1995, 1996, 1997 by HaL
Computer Systems, Inc., O’Reilly & Associates, Inc., Fujitsu Software Corporation, and ArborText,
Inc.

1.2. Why DocBook?

The DocBook format was designed by OASIS consortium specifically for technical documentation.
It provides a rich set of tags to describe the content of your document.

Here is a number of key points that help understand what DocBook is:

Docbook is a markup language

It is very similar to HTML in this respect. The tags give some structure to your document, and
appear intermixed with the informational text.

This pecular point makes it a revolution with respect to documentation translation, because the
DTP phase (making the text look nice) is done once for all indirectly by tagging the original
text. The translators only have to translate "in between thetags" and by pressing a single
keystroke the translated output is generated.

It is made for technical documentation

DocBook is perfectly suited for car engine parts documentation. However, it is strongly biased
towards computer programs documentation.

It is maintained by an independant consortium

The OASIS (http://www.oasis-open.org) consortium is in charge of maintaining and making
this standard evolve through the DocBook Technical Committee. This is a guarantee of
independance in front of proprietary software and standards.

Major actors of the industry like Boeing or IBM are members ofOASIS. Refer to the updated
members list (http://www.oasis-open.org/html/members.htm) for further information.

Technically, DocBook is a SGML or XML DTD

This means that one can take profit of the many SGML and XML aware tools. While DocBook
as an XML implementation is quite recent, it has a long history as a SGML implementation.

DocBook is not a presentation language

DocBook carefully cares aboutnot specifying how the final documentation looks like. This
allows the writer to concentrate on the organization and meaning of the document he or she
writes. All the presentation issues are devolved to style sheets.

This ensures all your documents have a consistent appearence, whoever should be the technical
writer.

2

Chapter 1. Introduction

DocBook is customizable

It is quite easy to customize the DTD to meet one’s need thanksto its modular organization. But
one must be aware that this must be done with respect to SGML/XML conventions and that it
might introduce incompatibilities.

If DocBook is used in conjunction with Norman Walsh’s modular stylesheets, it is also possible
to customize the way a DocBook file can be printed or put onlinetoo.

DocBook is comprehensive

The large number of tags defined in DocBook guarantees that itcan accomodate a wide range
of situations and of processing expectations.

This in turn makes it a bit difficult to learn, but one can manage writing documentation knowing
only a limited set of tags and referring to the reference documentation when needed.

DocBook uses long and understable tags

Example of such tags are <itemizedlist> or <literallayout>. This makes a DocBook text much
easier to read than an HTML source for example. As a drawback,it can also become a bit
tedious to type those long tags, but specialized modes in usual editors (like Emacs’ psgml
mode) can help out of this. One can use authoring tools as well.

DocBook does not ensure ascending compatibility between major releases

While this might seem a drawback, in fact it is not, because itensures a clean design even if
wrong choices have been made previously by the DocBook Commitee at OASIS, and because
documents written with different DTDs can coexist on a same computer system.

Some of those key points are discussed in more detail in the next sections.

1.3. Your World View

Most people who do word processing or typesetting use a WYSIWYG word processor or a
typesetting system in which they type explicit markup instructions which tell the typesetter how to
position text on the page (such as TeX and troff).

Both of these approaches suffer from a few serious problems.The biggest one is longevity of the
document: eternal information (the profound things you type) is interspersed with information that
will be obsolete (the typesetting information).

Another big problem with this old approach is lack ofstructure: the markup did not express content,
but rather page layout. Let’s say you are interested in indexing a bunch of papers written in TeX. It
would be rather easy to index all occurances of boldface text, but that’s not interesting at all! Instead,
it would be really useful to index all function names in an API. With old typesetting approaches you
would need artificially intelligent software that could understand the text and say “aha! this must be
the definition of a function in the API”.

3

Chapter 1. Introduction

So your old world view of writing a document and having the main challenge be how to mark it up to
look good on paper is a poor one. Your challenge should be how to mark your document up to
emphasizesemantic content.

1.4. Markup based on content

So how do you mark your documents such that useful information can be extracted and indexed?
The approach in DocBook is to provide a very rich set of markuptags that all relate to the structure
and nature of the document’s content.

To give you a couple of examples of tags that could help with generating automatic indices:
<attribution> and <command>. If you have a large body of documentation (for example, all Sun
software and hardware is documented with DocBook) you can doa very easy search for any
document that discusses a command calledmount, or a quote attributed to Ken Thompson. On top
of that, with such a structured search you would only find occurances ofmount when it is a
command name, and of Thompsonwhen he is the author of a quote.

Now imagine for a moment what would happen if the entire WorldWide Web used a rich
content–based markup language instead of HTML: a search engine would give you the information
you need without all the extra references which just happen to use those words casually. A search for
mount on the web would almost certainly not find you references on the UNIX mount command.

So a rich markup language like DocBook is a good idea from manypoints of view, but it can also be
difficult to use. DocBook has hundreds of tags (as opposed to just a few in HTML), so you might
find the learning curve steep. That is true, and the only way around that is to write documentation on
how to use DocBook!

On the other hand, once you are quite familiar with DocBook itwill not slow you down too much to
type in markup all the time. Keep in mind that most of the time aperson is not writing, but rather
worrying about meta–level problems with their document. Ifyou use DocBook well you will spend a
bit more time writing and a lot less time worrying about otherissues like the layout on paper. (There
is nothing you can do about it anyway!)

4

Chapter 2. Getting started

2.1. Presentation of the Tools

This section describes how to work with DocBook on Unix-likesystems like Linux. If you
unfortunately are working on some other operating system, you might need to gather and configure
the needed tools by yourself or to buy a commercial solution.

The technology around DocBook evolves. In the past:

• DocBook started as a “SGML application”, just like HTML did.

• DocBook documents used being converted with the help of DSSSL style sheets.

• The PDF layout was accomplished through TeX typesetting engine.

Now, on the contrary:

• DocBook follows the syntax of XML, just like XHTML does.

• It is converted to other formats by XSLT style sheets.

• PDF layout being done through a XSL-FO engine.

The tools used to process DocBook files have to keep up with this evolution. We will successively
present the DocBook-tools (SGML/DSSSL technology) and XSLTProc/FOP (XML/XSL
technology).

Note: There is another distribution of SGML/DSSL tools named "SGML-Tools (Lite)". More
information is available at http://www.sgmltools.org.

2.2. The Old Way: the DocBook-tools

The DocBook-Tools consist of several packages that work together to convert DocBook SGML files
into many other formats, and to perform other miscellaneousoperations. The output formats include:

• HTML

• TeX and DVI

• PostScript

• RTF

• PDF

• Man pages

• TexInfo

5

Chapter 2. Getting started

Note: We have said that the DocBook-tools were made for SGML DocBook. That’s true, but they
can also handle XML DocBook files.

The home page of the DocBook-Tools project is at http://sources.redhat.com/docbook-tools and the
packages themselves can be obtained from ftp://sources.redhat.com/pub/docbook-tools/new-trials/ or
one of its mirrors. Some commercial distributions have adopted the DocBook-Tools and provide
them on their CD.

The DocBook-Tools include the following packages:

sgml-common

basic SGML declarations and tools

jade

a SGML and DSSSL stylesheets engine

jadetex

a set of TeX macros used by the files generated by Jade

docbook-dtdXX-sgml

DocBook’s SGML DTD (there’s one package per version of the DTD)

docbook-style-dsssl

Norman Walsh’s DSSSL stylesheets for DocBook

perl-SGMLSpm

Interface between Perl and SGML

docbook-utils

Helper shell scripts and perl utilities

psgml

Major mode for Emacs to edit SGML files

We will describe here only the RPM version of these packages.For other package formats, you will
need to adapt the instructions below.

1. Download the packages

2. Install them

as in the following session example:

$ ncftp ftp://sources.redhat.com

ncftp> cd pub/docbook-tools/new-trials/RPMS

ncftp> mget i386/*.rpm

6

Chapter 2. Getting started

ncftp> mget noarch/*.rpm

ncftp> quit

$ su

Password: ultra-sucure

rpm -ih sgml-common*.rpm

rpm -ih jade*.rpm

rpm -ih jadetex*.rpm

rpm -ih docbook-dtd44-sgml*.rpm

rpm -ih docbook-style-dsssl*.rpm

rpm -ih perl-SGMLSpm*.rpm

rpm -ih docbook-utils*.rpm

exit

Note: The order of installing packages is important.

Note: When you are upgrading, rather than installing for the first time, the rpm -ih steps should
be replaced with rpm -Uh.

You are now ready to edit SGML/DocBook documents, then convert them to other formats. To do
that, you will use one of the following commands:

• docbook2html=> HTML

• docbook2ps=> PostScript

• docbook2pdf=> PDF

• docbook2rtf => Rich Text Format

• etc...

2.3. The New Way: XSLTProc and FOP

Since the XML-based tools are much easier to use than the SGML-based tools, there is no software
wrapper like the DocBook-tools around them. The basic utilities can be used directly.

The output formats are:

• HTML

• PDF

• MIF

• PCL

• PS

• SVG

7

Chapter 2. Getting started

RTF is planned by the experimental releases of FOP.

On a RPM-based system, you will need the following software packages:

docbook-dtdXX-xml

DocBook’s XML DTD (there’s one package per version of the DTD)

docbook-style-xsl

Norman Walsh’s XSL stylesheets for DocBook

libxml2

Daniel Veillard’s XML library, needed by libxslt

libxslt

Daniel Veillard’s XSLT conversion engine

java-1_4_2-sun

... or any other Java Runtime Environment, needed by fop

fop

XSL-FO processor

Most of these packages are usually preinstalled with your Linux distribution. For the other ones, use
rpm -ih packagename.

You are now ready to edit XML/DocBook documents, then convert them to other formats. To do
that, you will need the following commands:

• xsltproc: DocBook to HTML or XSL-FO

• fop: XSL-FO to PDF, PS, etc.

2.4. My First DocBook File

First, you need a DocBook file to convert. Take any simple texteditor you want and type (or
cut’n’paste) the following lines:

Example 2-1. A minimal DocBook file

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN"

"/usr/share/xml/docbook/schema/dtd/4.4/docbookx.dtd">

<book>

8

Chapter 2. Getting started

<bookinfo>
<title>Hello, world</title>
</bookinfo>

<chapter>
<title>Hello, world</title>

<para>This is my first DocBook file.</para>

</chapter>
</book>

Then save it under, say,myfile.docbook. If you are using SGML tools, the long pathname between
quotes on the third line is not needed.

To convert this file from DocBook format to HTML format, use the command:

$ docbook2html myfile.docbook

or

$ xsltproc /usr/share/xml/docbook/stylesheet/nwalsh/current/html/docbook.xsl myfile.docbook -o myfile.html

according to your toolkit (DocBook-tools or XSLTProc).

Jade or xsltproc will chug away, and if your document has no errors you will get one or more HMTL
files. Use a Web browser to look at them,book1.htm.

If you do get errors, read through the error log and correct errors from the beginning of the list first.
Often, an early error such as an unclosed tag will cause a lot more errors to occur later in the
document.

2.5. Introducing the Style Sheets

Note: This section is a bit outdated. It should describe the XSLT style sheets as well.

Stylesheets can tune the conversion in a way the resulting files have more clever names. Change the
<book> and <chapter> tags in the above example as follows:

Example 2-2. The minimal DocBook file, with some attributes

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN">

<book lang="en">
<!-- Please remark the "lang" attribute here -->

9

Chapter 2. Getting started

<bookinfo>
<title>Hello, world</title>
</bookinfo>

<chapter id="introduction">
<title>Hello, world</title>

<para>This is my first DocBook file.</para>

</chapter>
</book>

The text between <!-- and --> above is a comment; use it to attract the attention of someone reading
the DocBook source. It will never get processed.

Now use the style sheet provided with the docbook-utils:

$ cp /usr/share/sgml/docbook/utils*/docbook-utils.dsl .

$ docbook2html -d docbook-utils.dsl#html myfile.docbook

Now the files should go to aHTML directory, and be namedindex.html and
introduction.html, instead of having names likebook1.htm. The main file will always be
namedindex.html and the chapters like <chapter id="introduction"> will go to files named after
the id attribute. This change has been accomplished throughstyle sheet magic.

Note: Use #print instead of #html to specify the right part of the style sheet to use if you try them
with some command like docbook2pdf instead of docbook2html .

In fact the style sheets are a very powerful tool. They enableyou to get rid of problems like "I want it
to look like this". If you come to such questions while writing a DocBook file, then it means that
something is going wrong in your approach of the things.

If you get a look to the style sheet file nameddocbook-utils.dsl, you’ll see that it is written in a
cryptic language named DSSSL, that looks really like some LISP. This unfortunately means that
some good programming knowledge is often required to tune the stylesheets.

More information on how to customize the stylesheets can be found on
http://www.nwalsh.com/docbook/dsssl/doc/. More information on DSSSL can be obtained on
http://www.jclark.com/dsssl/ (http://www.jclark.com/dsssl).

10

Chapter 3. Basic notions

3.1. Anatomy of a DocBook Tag

A DocBook tag consists of an element and attributes. For example, <chapter id="introduction">
contains the element chapter and the attribute id. The element modifies the text within the markup,
and the element’s attributes modify the element. For example, the chapter element says that all text
included within the starting and closing tags should be treated as a chapter, while the id attribute
labels the chapter so it can be linked to or used as a file name when DocBook is translated to another
format.

Most DocBook tags contain a common set of attributes. The common attributes that you will be
using most often are lang, which specifies the language of thedata inside the tag, and id, which
labels the tag.

Important: All (or nearly all) DocBook tags must have a start and an end tag. If you read
through the DocBook Reference you will notice that not all DocBook tags are required to have
both start and end tags. Omitting the ending tags where they are not required is not usually a
good idea because it will work only with SGML DocBook and not with XML DocBook.

Also, make sure to follow the proper case of the tag because XML is picky about the case of tags.

For detailed information about tags and a list of all available tags, see the DocBook Reference
(http://www.oasis-open.org/docbook/documentation/reference/html/docbook.html) and the DocBook
Quick Reference (http://www.docbook.org/tdg/en/html/quickref.html). Those guides currently
address the version 3.1 of DocBook but they can be applied with little modifications to earlier or
latter versions.

3.2. The Structure of a DocBook File

The tags covered in this section are listed below.

book - Book
article - Article
refentry - Equivalent of a man page
chapter - Chapter of a book or an article
sect1 ... sect5 - Sections and subsections of a chapter
title - Text of a heading or the title of a block-oriented element
para - Paragraph

Example 3-1. Chapters and sections

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN">

<book id="hello-world" lang="en">

11

Chapter 3. Basic notions

<bookinfo>
<title>Hello, world</title>
</bookinfo>

<chapter id="introduction">
<title>Introduction</title>

<para>This is the introduction. It has two sections</para>

<sect1 id="about-this-book">
<title>About this book</title>

<para>This is my first DocBook file.</para>

</sect1>

<sect1 id="work-in-progress">
<title>Warning</title>

<para>This is still under construction.</para>

</sect1>

</chapter>
</book>

The above example shows a skeleton of the structural tags. The first line is the DTD declaration
which indicates which DTD to use to process this document (namely DocBook version 4.4). This
information will be described in more detail in theDocument Type Declarationsection.

Next comes the content model, which is <book> here. You can also use <article>, which is more
lightweight than <book>, or <refentry> which is the equivalent of a UNIX man page.

Note the use of the lang attribute in the <book> tag. The language attribute should always be used to
make it easy to determine what language in which the documentis written.

After the <book> tag comes the meta information for the document which is encapsulated within the
<bookinfo> tag. This information will be described in more detail in theMeta Informationsection.

Then come the chapters of your book, which may contain one or more section tags (<sect1> -
<sect5>). Human-readable (not numerical) ID attributes for <chapter> and <sect> tags are required
for two reasons:

• Labelling all of the sections of your document allows you to easily cross-reference your document
with hyperlinks.

• Jade uses the ID’s of Chapters to name the output files, so if you do not include ID’s for all your
Chapters, the file names will be different each time the docs are updated, which wastes space in
CVS.

12

Chapter 3. Basic notions

Chapters and sections must contain at least a <title> and an empty <para> tag. The place where
certain elements can occur, cannot occur or must occur is defined by the DocBook DTD, and is
covered in detail by the Reference Guide.

Content in DocBook is contained within a <para> tag, which isvery similar to the <p> tag in HTML
and LinuxDoc except that it must always have a closing </para> tag. Each time there can be a line
break in some text (like in a list item), it means that the textwill have to be enclosed in <para> tags.

Let’s summarise and extend what we have seen so far. A book will be structured in the following
way:

book
meta information
chapter
sect1
sect2

sect1
chapter
sect1

appendix
sect1

appendix
sect1
...

glossary

An article will be structured in the following way:

article
meta information
sect1
sect1
sect2

sect1
...

13

Chapter 4. The Document Type Declaration

In "real life", the document type declaration (the very firstlines of your DocBook file) is slightly
more complicated than the single line presented in the document skeleton in the previous section.

We’ll examine in the following sections why it makes sense toadd declarations here.

4.1. Using Entities for Shared Text

Example 4-1. Entities used to share text

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN" [

<!ENTITY cereals "<productname>Frobozz Cerals</productname>">
<!ENTITY orange-juice "<productname>Hourmade Orange Juice</productname>">

]>

<book id="marketing-study" lang="en">

<bookinfo>
<title>Marketing study about &cereals;</title>
</bookinfo>

<chapter id="introduction">
<title>Introduction</title>

<para>
This study describes the expected impact of the
new &cereals; product, and examines the opportunity
of an advertising campain combined with the &orange-juice;.
</para>

</chapter>
</book>

You find there "entity definitions" that makes &cereals; a synonymous for the "Frobozz Cereals"
product name, marked up as <productname>Frobozz Cereals</productname>.

The example will look something like this when converted:

This study describes the expected impact of the new Frobozz Cerals product, and examines the
opportunity of an advertising campain combined with the Hourmade Orange Juice.

14

Chapter 4. The Document Type Declaration

Proceeding like this has a number of advantages:

• It spares the hassle of typing several times the very same thing

• It allows to centralized the changes to commonly used sentences into one single place

• If the entity name is chosen with caution, it makes the sourcetext more legible

4.2. Using Entities to Include Other files

The document type declaration is also the right place to include other files. The documentation
usually tend to become very big, so it’s a good idea to split itinto several files that are included into a
single main file like this:

Example 4-2. Entities used to include other files

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN" [

<!ENTITY introduction SYSTEM "introduction.docbook">
<!ENTITY marketing SYSTEM "marketing-plan.docbook">
<!ENTITY advertising SYSTEM "advertising-campain.docbook">
<!ENTITY conclusion SYSTEM "conclusion.docbook">
<!ENTITY cereals "<productname>Frobozz Cerals</productname>">
<!ENTITY orange-juice "<productname>Hourmade Orange Juice</productname>">

]>

<book id="marketing-study" lang="en">

<bookinfo>
<title>Marketing study about &cereals;</title>
</bookinfo>

&introduction;
&marketing;
&advertising;
&conclusion;

</book>

Of course, you must create files namedintroduction.docbook, marketing-plan.docbook,
etc, that will hold your chapters, to make this example work.

15

Chapter 4. The Document Type Declaration

4.3. Identifying files with formal public IDs

Note: This is quite advanced technology. Feel free to skip it if you want to be told about more
basic topics.

You can always identify files to include by their name and pathinformation (a system identifier). But
there are several reasons why you may want to use public IDs, or FPIs, instead. The biggest reason is
to make it easier to move files without having to change your documents. Another reason is to make
it easier to exchange your files with other people or groups where the directories on their system may
be different. FPIs also allow you or your company to claim ownership of important information,
such as your DTD.

With FPIs, you identify a file by an abstract name in your document and then supply the location of
that file in a catalog, sometimes called a mapping file or entity manager. The catalog is another,
separate file from your document.

If a file that is used in your document moves, you simply changeits location in the catalog rather
than changing the location in your document or any other document that uses it. If you exchange
files with someone else, or simply move the files to a new computer with different directories, you
only have to change the location information once in the catalog.

FPIs must have a specific structure. Two slashes are used to mark the separation between each part of
the structure, such as:

"Registration//Owner//Keyword Description//Language"

Registration

The first character indicates whether the FPI is formally registered (+) or not (-) with an ISO
approved registration service. If you define your own FPIs and don’t register them, use the
hyphen.

Owner

The owner of the file is the second part of the FPI. This can be a company, an organization, or a
person.

Keyword

There are several keywords that indicate the type of information in the file. Some of the most
common keywords are DTD, ELEMENT, and TEXT. DTD is used only for DTD files,
ELEMENT is usually used for DTD fragments that contain only entity or element declarations.
TEXT is used for SGML content (text and tags).

Description

Any description you want to supply for the contents of this file. This may include version
numbers or any short text that is meaningful to you and uniquefor the SGML system.

16

Chapter 4. The Document Type Declaration

Language

This is an ISO two-character code that identifies the native language for the file. EN is used for
English. For a DTD like DocBook, it’s the language of the markup text, not the language of the
document itself!

To use those Formal Public Identifiers in your document, replace the SYSTEM keyword with
PUBLIC in the Document Type Declaration at the beginning of your file. Then, for the systems to
know where to find the file, you will neeed to establish a correspondance between the FPI and the
real filename in a "catalog". Look into the files named "catalog" under/usr/share/sgml to see
how this works.

4.4. Using Marked Sections to Handle Conditional
Content

Note: This is quite advanced technology. Feel free to skip it if you want to be told about more
basic topics.

Please be aware that marked sections are not supported by XML. Skip this section too if you are
using XML.

Sometimes you need to have different versions of the contentfor different purposes. There are
several ways to do this using SGML, one of which is called marked sections. A simple example of
conditional content might be the description of keys used ina software program where they appear
in boxes in the printed manual but are blue inside brackets onthe web site or CD. Rather than have
two separate versions of the conventions for each output of the manual, you can use marked sections
to keep both variations in the same document.

There are different types of marked sections, but the types that allow you to control conditional
content are ignore/include sections. These markers act like on/off switches to allow content to be
included or ignored in different situations.

The marker for an include marked section looks like this:

<![INCLUDE [keys are boxed, such as <key>F1</key>]]>

while an ignore marked section looks like this:

<![IGNORE [keys are blue inside brackets, such as <key>F1</key>]]>

INCLUDE and IGNORE are the keywords that tell the SGML systemwhat to include or skip. As
this example shows, marked sections can contain both text and tags as long as the tags within the
markers are balanced (if a tag starts inside a marker, then itends inside the same marker).

In this example, you leave the markers for the print version as INCLUDE and the markers for the
electronic version as IGNORE when you print a master copy. When you create the electronic book

17

Chapter 4. The Document Type Declaration

or HTML for the web site, you change the markers for the print version to IGNORE and the markers
for the electronic version to INCLUDE. This works just fine, unless you have several different
sections you need to include or ignore together - it’s cumbersome to change each one manually and
you can easily make a mistake.

So instead, you can define parameter entities under any namesyou want and then change the entities
to turn the include/ignore switches. To do this, you add parameter entity declarations in the internal
subset at the top of your master SGML document. For example:

<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.4//EN" [
...
<!ENTITY % hardcopy "INCLUDE">
<!ENTITY % softcopy "IGNORE">
...]>

You then use the names for each marked section, like this:

<![%hardcopy; [keys are boxed, such as <key>F1</key>]]>
<![%softcopy; [keys are blue inside brackets, such as <key>F1</key>]]>

To print the master copy, you leave the entity declarations as they are shown above. The SGML
system interprets each %hardcopy; it finds as INCLUDE and includes those marked sections. The
%softcopy; is interpreted as IGNORE and those sections are skipped. When you’re ready to produce
the electronic version, you only have to change the entity declarations at the top of the file, like this:

<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.4//EN" [
...
<!ENTITY % hardcopy "IGNORE">
<!ENTITY % softcopy "INCLUDE">
...]>

With this single change, the electronic versions are included and the printed versions are skipped.

Marked sections can be simple, but they are not always the best choice to manage conditional text.
They are best if you use them sparingly and in very clear situations - it’s easy to figure out when to
use them and when to change the INCLUDE/IGNORE switches. Some of the problems that they can
create include:

• Marked sections can be nested (a marked section inside another marked section), but this can
confuse your SGML system and may not produce the effect you want. For example, SGML
systems can’t properly handle an included marked section inside an ignored marked section.

• If you use lots of differently named sections, it’s easy to lose track of the content and can make
your SGML document invalid if some required structures are set to IGNORE.

• Finally, they are not supported in XML. Moving to XML could bedifficult if you use marked
sections a lot.

18

Chapter 5. Meta Information

The tags covered in this section are listed below.

bookinfo - Metainformation for a book
title - Text of a heading or the title of a block-oriented element
authorgroup - Wrapper for author information
author - Author of a document
authorinitials - Initials or other identifier for the authorof a revision or comment
firstname - Given name
othername - Name component that is not a firstname, surname, or lineage
surname - Family name
keywordset - Set of terms describing the content of a document
keyword - Term describing the content of a document
releaseInfo - Information about a particular version of a document
revhistory - Revisions to a document
revision - Entry in revhistory, describing some revision made to the text
revnumber - Number of a revision
revremark - Description of a revision
abstract - Document summary
date - Date of publication or revision of a document

Example 5-1. DocBook metainformation

<bookinfo>
<title>The Twiddle Handbook</title>
<authorgroup>
<author>
<firstname>George</firstname>
<othername>N.</othername>
<surname>Ugnacious</surname>
</author>
</authorgroup>

<date>03/04/1999</date>
<releaseinfo>1.01.00</releaseinfo>

<abstract>
<para>
<application>twiddle</application> is an application specially
designed to do nothing you would ever want.
</para>
</abstract>

<keywordset>
<keyword>twiddle</keyword>
<keyword>sample application</keyword>
</keywordset>

</bookinfo>

The <bookinfo> tag contains all of the meta information for your document.

19

Chapter 5. Meta Information

It is information that describes your document, as opposed as its contents that are in the various
chapters. This allows to:

• retrieve a specific among many others on your local hard disk

• print some information on the front page, under the control of the style sheets

• have it retrieved by search engines if you put it online in HTML format

• etc ...

20

Chapter 6. Lists

DocBook lists are very similar to their counterparts in HTMLexcept that DocBook contains several
more types of lists for specialized purposes.

The tags covered in this chapter are listed below.

simplelist - List of single words or short phrases
member - Member of a simplelist
itemizedlist - List in which each entry is marked with a bullet, dash, or other dingbat
listitem - Wrapper for the elements of items in an itemizedlist or orderedlist
orderedlist - List in which each entry is marked with a sequentially incremented label
variablelist - List in which each entry is composed of sets ofone or more terms with associated listitems
varlistentry - Wrapper for term and its associated listitemin a variablelist
term - Hanging term attached to a listitem within a varlistentry in a variablelist
segmentedlist - List of sets of information
segtitle - Title that pertains to one seg in each seglistitem
seglistitem - List item in a segmentedlist
seg - Component of a segmentedlist
qandaset - A question-and-answer set
qandaentry - A question/answer set within a qandaset
question - A question in a qandaset
answer - An answer to a question posed in a qandaset
procedure - List of operations to be performed
step - Part of a procedure
substeps - Wrapper for steps within steps

6.1. The simplelist

The easiest of all the lists to use is the simplelist. It is designed for lists of short phrases (like a
grocery list) and only requires two tags for building the list as you can see in the example below. The
<member> tag can only contain inline content, so a simplelist cannot contain other lists.

Example 6-1. A simplelist

<simplelist>
<member>Apples</member>
<member>Oranges</member>
<member>Bananas</member>
<member>Grapefruit</member>
<member>Black Beans</member>
</simplelist>

When converted, a simplelist will look something like this:

Apples

21

Chapter 6. Lists

Oranges
Bananas
Grapefruit
Black Beans

6.2. The itemizedlist

An itemizedlist is similar to the simplelist except that each entry contains a paragraph instead of just
a short phrase, allowing you to put more varied content in your list. ItemizedLists can contain other
lists.

Example 6-2. An itemizedlist

<itemizedlist>
<listitem><para>Apples - my favorite fruit.</para></listitem>
<listitem><para>Oranges - yummy, but sticky.</para></listitem>
<listitem><para>Bananas - they ripen too quickly!</para></listitem>
<listitem><para>Grapefruit - great when eaten in halves.</para></listitem>
<listitem><para>Black Beans - go well with rice.</para></listitem>
</itemizedlist>

The example will look something like this when converted:

• Apples - my favorite fruit.

• Oranges - yummy, but sticky.

• Bananas - they ripen too quickly!

• Grapefruit - great when eaten in halves.

• Black Beans - go well with rice.

6.3. The orderedlist

The orderedlist is like the itemizedlist except that each listitem is numbered or lettered. The
numeration attribute specifies what kind of numbering will be used and can be one of the following
values: arabic, upperalpha, loweralpha, upperroman, lowerroman. There are several other attributes
that control the appearance of an orderedlist, see the DocBook Reference for details. orderedlists can
contain other lists.

22

Chapter 6. Lists

Example 6-3. An orderedlist

<orderedlist numeration="arabic">
<listitem><para>Wake up.</para></listitem>
<listitem><para>Eat Breakfast.</para></listitem>
<listitem><para>Take a shower.</para></listitem>
<listitem><para>Contemplate my navel.</para></listitem>
<listitem><para>Go to Sleep.</para></listitem>
</orderedlist>

The example will look something like this when converted:

1. Wake up.

2. Eat Breakfast.

3. Take a shower.

4. Contemplate my navel.

5. Go to Sleep.

6.4. The variablelist

The variablelist is similar to an HTML definition list. It is used when you have a list of terms and
definitions. The variablelist consists of several tags: <varlistentry>, which is used to group related
terms together, <term>, which contains the term, and <listitem>, which contains the decription of the
term.

Example 6-4. A variablelist

<variablelist>
<varlistentry>
<term>Black Beans</term>
<listitem><para>My favorite black bean recipe is black bean
soup, but they also go well with rice.</para></listitem>
</varlistentry>
<varlistentry>
<term>Apples</term>
<term>Bananas</term>
<listitem><para>You can eat them straight, but they also go
well in salads and in desserts.</para></listitem>
</varlistentry>
</variablelist>

23

Chapter 6. Lists

When converted, the example variablelist will look something like this:

Black Beans

My favorite black bean recipe is black bean soup, but they also go well with rice.

Apples
Bananas

You can eat them straight, but they also go well in salads and in desserts.

6.5. The segmentedlist

segmentedlists are used to list information in distinct fields like the contents of an address book. The
name of each field is put inside of a <segtitle> tag. Then, use the <seglistitem> tag to start and end
each set of data. The actual data is put in the <seg> tag.

Example 6-5. A segmentedlist

<segmentedlist>
<segtitle>Name</segtitle>
<segtitle>Occupation</segtitle>
<segtitle>Favorite Food</segtitle>
<seglistitem>
<seg>Tux</seg>
<seg>Linux mascot</seg>
<seg>Herring</seg>
</seglistitem>
<seglistitem>
<seg>Konqui</seg>
<seg>The KDE Dragon</seg>
<seg>Gnomes</seg>
</seglistitem>
</segmentedlist>

This silly example looks something like this when converted:

Name: Tux
Occupation: Linux mascot
Favorite Food: Herring

Name: Konqui
Occupation: The KDE Dragon
Favorite Food: Gnomes

24

Chapter 6. Lists

6.6. qandaset

The qandaset is a specialized list designed specifically to deal with sets of questions and answers,
like you would see in a FAQ. Each set of questions and answers are contained within a <qandaentry>
tag. The <question> and <answer> tags contain the questionsand answers respectively.

Example 6-6. A qandaset

<qandaset>
<qandaentry>
<question>
<para>What are little boys made of?</para>
</question>
<answer>
<para>Snips and snails and puppy dog tails.</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>What are little girls made of?</para>
</question>
<answer>
<para>Sugar and spice and everything nice.</para>
</answer>
</qandaentry>
</qandaset>

The qandaset looks something like this when converted:

1. What are little boys made of?

Snips and snails and puppy dog tails.

2. What are little girls made of?

Sugar and spice and everything nice.

6.7. Procedures

Procedure lists are a specialized orderedlist used for listing step-by-step procedures like you would
find in a recipe or Linux HowTo.

25

Chapter 6. Lists

Example 6-7. A procedure list

<procedure>
<title>Waking Up</title>
<para>This is what you must do to awaken.</para>
<step performance="required">
<para>
Bring yourself to a hypnopompic state, either from an ongoing dream or by use of
your internal clock. You may feel unable to move, but you will no longer be
dreaming. </para>
<para>Now you are ready for real-world readjustment.</para>
<substeps>
<step performance="optional">
<para>Roll over.</para>
</step>
<step performance="required">
<para>Squint out of one eye.</para>
</step>
</substeps>
</step>
<step performance="required">
<para>Yawn and rise from your bed.
</para>
</step>
</procedure>

The above example would look something like this when converted:

Waking Up

This is what you must do to awaken.

1. Bring yourself to a hypnopompic state, either from an ongoing dream or by use of your internal
clock. You may feel unable to move, but you will no longer be dreaming.

Now you are ready for real-world readjustment.

a. Roll over.

b. Squint out of one eye.

2. Yawn and rise from your bed.

26

Chapter 7. Tables

The tags covered in this section are listed below.

table - Table in a document
informaltable - Untitled table
thead - Heading row of a table
tfoot - Footer row of a table
tgroup - Wrapper for part of a table that contains an array along with its formatting information
tbody - Wrapper for the rows of a table or informaltable
row - Row in a tbody, thead, or tfoot
entry - Cell in a table
entrytbl - Subtable appearing as a table cell

Tables are used to organize data into a columnar format with optional titles, headers, and footers.
DocBook tables come in two varieties: the table, which requires a title, and the informaltable, which
does not have a title. All the other characteristics of thesetwo table types are the same.

A table consists of formatting information and data entries. There are quite a few attributes that can
be adjusted to tweak the display of your data. This tutorial will only cover the basic formatting
attributes. For more details, you should refer to the DocBook Reference.

Tables begin with the <table> or <informaltable> tag. Next,define a title using the <title> tag if you
are using a regular table. Finally, we get to the <tgroup> tagwhich contains all of the header, footer,
and row information. You can have more than one tgroup if you wish to change formatting options
for a section of the table. The <tgroup> tag has a number of optional formatting parameters, but the
COLS attribute, which specifies the number of columns, is required. The <thead>, <tfoot>, and
<tbody> contain the data in your table. Data in the thead appears at the top of the table, tbody
appears in the middle, and tfoot appears at the end of the table.

Data in a table is contained in rows and entries, labelled with the <row> and <entry> tags
respectively. Use the <row> tag to begin a row, an <entry> tagfor each item of data, and a closing
<row> tag to end that row. If you want to embed a table within a table, you must use the <entrytbl>
tag.

Example 7-1. A table

<table>
<title>Mouse Mileage</title>
<tgroup cols="3">
<thead>
<row>
<entry>Month</entry>
<entry>Week</entry>
<entry>Feet Traveled</entry>
</row>
</thead>
<tfoot>
<row>

27

Chapter 7. Tables

<entry>Total</entry>
<entry></entry>
<entry>1753</entry>
</row>
</tfoot>
<tbody>
<row>
<entry>August</entry>
<entry>1</entry>
<entry>987</entry>
</row>
<row>
<entry>August</entry>
<entry>2</entry>
<entry>657</entry>
</row>
<row>
<entry>August</entry>
<entry>3</entry>
<entry>109</entry>
</row>
</tbody>
</tgroup>
</table>

The above example would look something like this when converted:

Table 7-1. Mouse Mileage

Month Week Feet Traveled

August 1 987

August 2 657

August 3 109

Total 1753

28

Chapter 8. Graphics

Below is a list of tags related to graphical objects:

screeninfo - Information about how a screenshot was produced
screenshot - Representation of what the user sees or might see on a computer screen
mediaobject - A picture, a sound, a text, that can be encoded in several different formats at the same time, not rendered
inlinemediaobject - A picture, a sound, a text, that can be encoded in several different formats at the same time, to be rendered
imagedata - One of the formats encoding the image, such as EPSwhen printing and PNG when displaying online

Documentation for graphical applications demands screenshots, pictures of icons and buttons, and
other graphical elements. DocBook has tags to support screenshots, graphics, and inline graphics.
The examples below contain the same picture as a screenshot and as an inline graphic.

Example 8-1. An inline media object

<para>
Here are a bunch of rectangles
<inlinemediaobject>
<imageobject> <imagedata fileref="rectangles.eps" format="EPS" /> </imageobject>
<imageobject> <imagedata fileref="rectangles.png" format="PNG" /> </imageobject>
<textobject> <phrase>A bunch of rectangles</phrase> </textobject>
</inlinemediaobject>
</para>

The <inlinemediaobject> tag is displayed alongside text. The fileref attribute of the <imagedata> tag
contains the name of the graphic file, the format attribute contains the type of the graphic file, and
the optional align attribute changes the alignment of the graphic. The example will look something
like this when converted:

Here are a bunch of rectangles

29

Chapter 8. Graphics

Example 8-2. A screenshot

<screenshot>
<screeninfo>Colored Rectangles</screeninfo>
<mediaobject>
<imageobject> <imagedata fileref="rectangles.eps" format="EPS" /> </imageobject>
<imageobject> <imagedata fileref="rectangles.png" format="PNG" /> </imageobject>
<textobject> <phrase>A bunch of rectangles</phrase> </textobject>
<caption>
<para>Here are a bunch of rectangles</para>
</caption>
</mediaobject>
</screenshot>

The <screenshot> tag designates a screenshot with the <screeninfo> tag providing a textual
description of the screen shot. The heart of the screenshot is the <mediaobject> tag which points to a
graphic file as explained in the first example. A screen shot looks something like this when
converted:

30

Chapter 8. Graphics

Here are a bunch of rectangles

31

Chapter 9. Links

These are the tags covered in this section:

anchor - Spot in text
email - Email address in an address
link - Hypertext link
ulink - A link that addresses its target by means of a URL, a Uniform Resource Locator

Linking in DocBook is very similar to linking in HTML. The <link> tag is used to link to any
element with an ID in a document, and can also be used to link toother local files as well. The
<ulink> tag is used when you need to link to a URL. The <email> tag is a specialized form of the
ulink tag used for email addresses. <anchor> is used to mark aspot in the text that you want to
reference later with a Link.

Example 9-1. Many kinds of links

<para id="mylink">
This is a paragraph that will be linked to with a link tag. Oh, and by
the way, check out <ulink url="http://www.kde.org">my favorite web
site</ulink> while you are here. <anchor id="anotherlink"/> Kilroy was
here.</para>
<para>
The above paragraph can be located <link linkend="mylink">here</link>.
My email address is <email>konqui@kde.org</email></para>

Note that Link uses the linkend attribute and ulink uses the URL attribute for their link targets. The
above example would be displayed something like this when converted:

This is a paragraph that will be linked to with a link tag. Oh, and by the way, check out my favorite
web site (http://www.kde.org) while you are here. Kilroy was here.

The above paragraph can be locatedhere. My email address is <konqui@kde.org>

32

Chapter 10. Describing the Application’s
Interface

10.1. Examples

These are the tags covered in this section:

literallayout - Wrapper for lines set off from the main text that are not tagged as screens, examples, or programlisting,in
example - Example of a computer program or related information
informalexample - Untitled example
programlisting - Listing of all or part of a program
screen - Text that a user sees or might see on a computer screen

There are many situations where you must include examples ofsource code, commands, or GUI
actions in your documentation. DocBook has many tags to support these needs. Whenever you want
to include examples in your document, just put an <example> or <informalexample> tag around the
example text or graphic.

Example 10-1. An example

<example>
<title>A BASIC Example</title>
<programlisting>
10 PRINT "HELLO WORLD"
20 GOTO 10
</programlisting>
</example>

In this first example, we have a listing of a simple BASIC program. The code contained in the
<programlisting> tag is displayed with the spacing and linebreaks intact which is very useful for
code examples and similar situations where you must preserve the literal formatting. The
LiteralLayout and Screen tags work in the same way, but are used to indicate different types of
content. screen contains output that would appear on the screen, while literallayout is used for any
other text that must be rendered with line breaks and tabs.

The example would look something like this when converted:

Example 10-2. A programlisting

10 PRINT "HELLO WORLD"
20 GOTO 10

33

Chapter 10. Describing the Application’s Interface

One problem can occur with the LiteralLayout, ProgramListing, and Screen tags: all text is rendered
literally, but DocBook tags are still interpreted as tags and not text. What do you do when you need
to show text without having your tags interpreted? The answer is to use <![CDATA []]>, which
labels the text contained within the inner brackets as character data that should not be interpreted by
the SGML parser. Any text within the brackets will remain as-is after the conversion, so the example
above will successfully reproduce its tags.

Example 10-3. CDATA usage

<example>
<title>some markup</title>
<screen>
<![CDATA[
<para>This is a DocBook example.</Para>
]]>

</screen>
</example>

This is what the markup example would look like when converted:

Example 10-4. Some markup

<para>This is a DocBook example.</para>

10.2. GUI Interface Elements

Accel - Keycap used with a meta key to activate a graphical user interface
KeyCap - Text printed on a physical key on a computer keyboard, not necessarily the same thing as a KeyCode
KeyCode - Computer’s numeric designation of a key on a computer keyboard
KeyCombo - Combination of input actions
KeySym - Key symbol name, which is not necessarily the same thing as a Keycap
MenuChoice - Menu selection or series of such selections
MouseButton - Conventional name of a mouse button
Interface - Element of a graphical user interface
InterfaceDefinition - Full or short name of a formal specification of a graphical user interface
GUIButton - Text on a button in a graphical user interface
GUIIcon - Graphic and, or, text appearing as a icon in a graphical user interface
GUILabel - Text in a graphical user interface
GUIMenu - Name of a menu in a graphical user interface
GUIMenuItem - Name of a terminal menu item in a graphical userinterface
GUISubmenu - Name of a submenu in a graphical user interface
Action - Function invoked in response to a user event

One could almost say that there are too many tags in DocBook for describing GUI elements. Most of
the tags listed above can be used in a variety of contexts, buta few, such as <keycap>, must be used

34

Chapter 10. Describing the Application’s Interface

within other tags. The example and explanation below will not cover all of the tags listed above. This
list is for your convenience since the DocBook Reference does not group tags by their function.

All of the GUI tags can be used within the context of a regular paragraph. So if I wanted to talk
about the Trash icon or the Empty Trash button, I would just use the <guiicon> and <guibutton> tags
like this: <guiicon>Trash</guiicon> icon, <guibutton>Empty Trash</guibutton> button. Note that
all GUI tags may also contain inline graphics.

Below is a more complicated example of GUI tag usage.

Example 10-5. guimenu and shortcut

<variablelist>
<varlistentry>
<term><menuchoice>
<shortcut>
<keycombo><keycap>Ctrl</keycap><keycap>n</keycap></keycombo>
</shortcut>
<guimenu>File</guimenu>
<guimenuitem>New</guimenuitem>
</menuchoice></term>
<listitem><para><action>Creates a new document</action></para></listitem>
</varlistentry>
<varlistentry>
<term><menuchoice>
<shortcut>
<keycombo><keycap>Ctrl</keycap><keycap>s</keycap></keycombo>
</shortcut>
<guimenu>File</guimenu>
<guimenuitem>Save</guimenuitem>
</menuchoice></term>
<listitem><para><action>Saves the document</action></para></listitem>
</varlistentry>
<varlistentry>
<term><menuchoice>
<shortcut>
<keycombo><keycap>Ctrl</keycap><keycap>q</keycap></keycombo>
</shortcut>
<guimenu>File</guimenu>
<guimenuitem>Quit</guimenuitem>
</menuchoice></term>
<listitem><para><action>Quits</action> application>Kapp</application></para></listitem>
</varlistentry>
</variablelist>

I hope your eyes haven’t glazed over at the sight of all those tags! The most complicated part of this
example is the <Shortcut> tag which labels keyboard shortcuts for menuitems. Shortcut contains
either a KeyCombo or a single KeyCap that contains the key or group of keys the use would press to

35

Chapter 10. Describing the Application’s Interface

invoke that menuitem from the keyboard. It is important to use the KeyCombo and KeyCap tags
within the Shortcut tag because it is incorrect to use character data (the Ctrl-q text for example)
within a shortcut.

Other tags worth mentioning from the example are menuchoice, action, and application. menuchoice
labels a menu choice and should contain the shortcut (if any)the name of the menu in GUIMenu,
and the name of the menuitem in guimenuitem. Action simply labels a phrase that describes what the
menuitem (or other interface element) does. application isa tag used to label the names of
applications.

The example would look something like this when converted:

File−→New (Ctrl-n)

Creates a new document

File−→Save (Ctrl-s)

Saves the document

File−→Quit (Ctrl-q)

Quits Kapp

10.3. Command Line Elements

The following tags are used to label elements of a command:

type - Classification of a value
literal - Literal string, used in-line, that is part of data in a computer
userinput - Data entered by the user
symbol - Name that is replaced by a value before processing
replaceable - Content that may be replaced in a synopsis or command line
filename - Name of a file, possibly including pathname
prompt - Character indicating the start of an input field in a computer display.
paramdef - Data type information and the name of the parameter this information applies to
parameter - Part of an instruction to a computer
option - Option for a computer program command
envar - Environmental variable
command - Executable program, or the entry a user makes to execute a command
cmdsynopsis - Synopsis for a command
arg - Argument in a cmdsynopsis
computeroutput - Data presented to the user by a computer
funcsynopsis - Syntax summary for a function definition
funcsynopsisinfo - General information on how to use the function
funcprototype - Prototype of the function
funcdef - Name and return value of the function
function - Name of the function
paramdef - Name and type of a function parameter
parameter - Name of a function parameter

There are two situations in which you want to describe a command: showing an example of a

36

Chapter 10. Describing the Application’s Interface

command typed on the command line and a detailed descriptionof all of the arguments and options
to a command like you would see in a man page.

DocBook supports both of these contexts with the <command> and <cmdsynopsis> tags.

Example 10-6. A command and its output

<screen>
<prompt>bash$</prompt> <command>twiddle <replaceable>myfile</replaceable>
</command>
twiddling myfile.....done!
</screen>

Would appear as:

bash$ twiddle -c 1 myfile

twiddling myfile.....done!

The command tag can also be used within a paragraph to mark thename of a command. For example:

The <command>twiddle</command> command is used to twiddle
files. Twiddled files will be marked with the .twid extension, so if I <command>twiddle</command>
<replaceable>myfile</replaceable> then it will become
<replaceable>myfile.twid</replaceable>. Errors are written to the
file <filename>twiddle.err</filename>.

Thetwiddle command is used to twiddle files. Twiddled files will be markedwith the .twid
extension, so if Itwiddle myfile then it will becomemyfile.twid. Errors are written to the file
twiddle.err.

The <prompt> tag is simply used to label the prompt in a command line. Replaceable labels text that
should be replaced by the user. In the example,myfile is just an arbitrary name for a file since we
don’t know and don’t care what the name of the file is, we just want to show how the command is
used. If a filename in a command is known, use the <filename> taginstead.

Marking up a cmdsynopsis is a bit more difficult. Here is an example from the DocBook Reference:

Example 10-7. A commandsynopsis

<cmdsynopsis>
<!-- This is a synopsis for the command foo.

The options -a and -x are optional and exclusive
The option -c takes a cheese and is optional and repeatable
The options -t and -k are referred to in another fragment
The options -i, -j, and -k are required and exclusive
The option -f takes a filename and is required

37

Chapter 10. Describing the Application’s Interface

The -t and -k options specify the kind of milk and mold in an
optional and repeatable group

-->
<command>foo</command>
<group>
<arg>-a</arg>
<arg>-x</arg>

</group>
<group>
<arg rep="repeat">-c <replaceable>cheese</replaceable></arg>
<synopfragmentref linkend="cheesetype">cheesetype</synopfragmentref>
</group>
<group choice="req">
<arg>-i</arg>
<arg>-j</arg>
<arg>-k</arg>

</group>
<arg choice="req">-f <replaceable>filename</replaceable></arg>
<synopfragment id="cheesetype">
<group rep="repeat">

<arg>-t <replaceable>milk</replaceable></arg>
<arg>-k <replaceable>mold</replaceable></arg>

</group>
</synopfragment>

</cmdsynopsis>

Which looks like this:

foo [-a | -x] [-c cheese➊cheesetype] {-i | -j | -k} {-f filename}

➊ [-t milk | -k mold]...

A cmdsynopsis contains one command, groups of related args,independent args, and
synopfragments. The <arg> labels arguments to the command.arg has two attributes: choice and rep.
choice is used to indicate whether the tag is optional (the default), required (req), or to be displayed
without any decoration (plain). The <group> tag is used to group together related args.
synopfragment is the most complicated of the cmdsynopsis tags. It is used to provide a more detailed
description of options for an argument. A synopfragment consists of two parts: the synopfragment,
which contains the additional Args, and the synopfragmentref which points to the detailed
description.

10.4. Describing an API

DocBook has a rather detailed way of marking up descriptionsof function behaviour. The tag that
introduces it is <funcsynopsis>. Here is an example:

38

Chapter 10. Describing the Application’s Interface

Example 10-8. Describing a function in a C library API

<funcsynopsis>
<funcsynopsisinfo>#include <stdlib.h></funcsynopsisinfo>
<funcprototype>
<funcdef>double <function>atof</function></funcdef>
<paramdef>const char *<parameter>nptr</parameter></paramdef>
</funcprototype>
</funcsynopsis>

Here is how it looks:

#include <stdlib.h>
double atof(const char *nptr);

39

Chapter 11. Miscellaneous Useful Tags

11.1. Labelling Tags

Application - Name of a software program
Markup - String of formatting Markup in text, which it is desired to represent literally

The application tag labels the name of an application. The <markup> tag is used to label marked up
text, such as HTML or TeX tags.

11.2. Formatting Tags

emphasis - Emphasized text
subscript - Subscript
superscript - Superscript

These tags are fairly self-explanatory.This is an emaphasized sentence with superscripted and
subscripted

text.

11.3. Warnings, Tips, and Notes

The following tags are used to set off paragraphs from the rest of the text.

caution - Admonition set off from the text
important - Admonition set off from the text
note - Message to the user, set off from the text
tip - Suggestion to the user, set off from the text
warning - Admonition set off from the text

All of the above tags wrap around paragraphs like in this example:

<warning><para>Danger, Will Robinson!</para></warning>

The example would look something like this:

Warning

Danger, Will Robinson!

40

Chapter 12. Where to Go Next

There are several useful parts of DocBook that are not discussed in this Tutorial. These include
Callouts, Indexes, Glossaries, and Reference Pages. If youneed to use any of these features, you
should consult the DocBook Reference and/or purchase a DocBook book.

12.1. DocBook Resources

Below are a list of resources that will help you acquire and get started with DocBook.

• DocBook technical committee (http://www.oasis-open.org/docbook/) page at OASIS

• DocBook - the Definitive Guide
(http://www.oreilly.com/catalog/docbook/chapter/book/docbook.html) online book

• DocBook 3.1 Quick Reference
(http://www.oreilly.com/catalog/docbook/chapter/book/quickref.html)

• Norman Walsh’s DocBook Site (http://nwalsh.com/docbook/)

• Jorge Godoy’s DocBook HOWTO (http://docbook.godoy.homeip.net:81/sgml/docbook/howto/)

• Mark Galassi’s DocBook Intro (http://nis-www.lanl.gov/~rosalia/mydocs/docbook-intro.html)

• FreeBSD Documentation Primer
(http://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/index.html)

• DocBook Install mini-HOWTO (http://www.tldp.org/HOWTO/mini/DocBook-Install/index.html)
- useful if you want to compile yourself your tools

• Bob DuCharme’s PSGML tips (http://www.snee.com/bob/sgmlfree/emcspsgm.html) for emacs

41

Appendix A. Licence

This document is released under Free Documentation licence; the terms of this licence are detailed
below.

A.1. Free Documentation Licence

GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation:a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document", below, refers to any
such manual or work. Any member of the public is a licensee, and is
addressed as "you".

42

Appendix A. Licence

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could falldirectly
within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political positionregarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in thenotice
that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that arelisted,
as Front-Cover Texts or Back-Cover Texts, in the notice thatsays that
the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for imagescomposed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is
not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTDand/or
processing tools are not generally available, and the
machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, thematerial
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page"means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

43

Appendix A. Licence

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you addno other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering morethan 100,
and the Document’s license notice requires Cover Texts, youmust enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-CoverTexts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the
general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you usethe latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the

44

Appendix A. Licence

Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Documentunder
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possessesa copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authorsof the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled "History", and its title, and add to

it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications",
preserve the section’s title, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,

45

Appendix A. Licence

unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section as "Endorsements"
or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s licensenotice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that thetext has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of thelist
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added byyou or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by thisLicense
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License,and
multiple identical Invariant Sections may be replaced witha single
copy. If there are multiple Invariant Sections with the samename but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a uniquenumber.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

46

Appendix A. Licence

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, anddistribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter
of the entire aggregate, the Document’s Cover Texts may be placed on
covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the
original English version of this License. In case of a disagreement
between the translation and the original English version ofthis

47

Appendix A. Licence

License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Suchnew
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http:///www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered versionof this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify aversion
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Textsbeing LIST.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections"
instead of saying which ones are invariant. If you have no
Front-Cover Texts, write "no Front-Cover Texts" instead of
"Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

48

Appendix A. Licence

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

49

Appendix B. Emacs PSGML mode tips

There are a few SGML editors. A well known one is emacs with PSGML mode. It has emacs-style
completion *on tags*.

Here are a few tips on how to use this mode. First install the "psgml" package, then load a DocBook
file into Emacs.

Note: Emacs with PSGML mode does not support filenames ending in .docbook. Your file name
has to end in .sgml or .xml like myfile.sgml.

If you type "C-c C-e" it will prompt you for an element, and offer as completions only the valid
elements at that point.

Once it inserts the element, it inserts it with any required following elements along with a comment
saying which ones you could put later on.

As an example, I just went to a DocBook buffer and typed

C-c C-e variab<SPACE BAR><RETURN>

and it inserted this text in the buffer:

<variablelist>
<varlistentry>
<term></term>
<listitem>
<!-- one of (epigraph authorblurb abstract highlights comment bridgehead anchor sidebar procedure ms-

gset table figure example equation informaltable informalexample informalequationgraphicco graphic block-
quote address simpara para formalpara funcsynopsis cmdsynopsis synopsis screenshot screenco screen pro-
gramlistingco programlisting literallayout warning tip note important caution variablelist simplelist seg-
mentedlist orderedlist itemizedlist glosslist calloutlist) -->

</listitem>
</varlistentry>

</variablelist>

Another example:

C-c C-e i<SPACE BAR>

50

Appendix B. Emacs PSGML mode tips

and it shows me the following completions:

Click mouse-2 on a completion to select it.
In this buffer, type RET to select the completion near point.

Possible completions are:
important indexterm
informalequation informalexample
informaltable itemizedlist

51

Glossary
ASCII

(American Standard Code for Information Interchange) Thisstandard character encoding
scheme is used extensively in data transmission.

ANSI

(American National Standards Institute) This group is the U.S. member organization that
belongs to the ISO, the International Organization for Standardization.

attribute

An attribute provides more information about an element such as classification level, unique
reference identifiers, or formatting information.

CCITT Group 4

(International Consultative Committee on Telegraphy and Telephony) This CALS standard for
raster graphics incorporates tiling, which divides a largeimage into smaller tiles. You can
exchange graphic files in CCITT/4 format in a compressed state so they take up much less file
space.

CITIS

(Contractor Integrated Technical Information Service) Aspart of CALS Phase II, CITIS is a
draft functional specification for services. DoD acquisition managers designed CITIS as a plan
to gain access to product-related digital technical information.

CGM

(Computer Graphics Metafile) CGM is one of the CALS standard formats for representing 2–D
technical illustrations. CGM is an object-oriented graphic format.

DSSSL

(Document Style Semantics and Specification Language) Style sheets language for SGML
documents derived from Scheme language and normalized under the number ISO/IEC
10179:1996.

52

Glossary

DTD

(Document Type Definition) A DTD is the formal definition of the elements, structures, and
rules for marking up a given type of SGML or XML document. You can store a DTD at the
beginning of a document or externally in a separate file.

EDI

(Electronic Data Interchange) This is a set of computer interchange standards for business
documents such as invoices, bills, and purchase orders.

element

An element is a piece of data within a document that may contain either text or other
subelements such as a paragraph, a chapter, and so on.

element declaration

A statement in the DTD defining an element and declaring the order in which it may appear in
the document and what other elements it may include.

entity

An entity is a self-contained piece of data that can be referenced as a unit. You can refer to an
entity by a symbolic name in the DTD or the document. An entitycan be a string of characters,
a symbol character (unavailable on a standard keyboard), a separate text file, or a separate
graphic file.

entity declaration

A statement in the DTD or document that assigns an SGML or XML name to an entity so you
can reference it.

FOSI

(Formatting Output Specification Instance) A FOSI is used for formatting SGML documents
for printing and other outputs. It is a separate file that contains formatting information for each
element in a document.

53

Glossary

HTML

(HyperText Markup Language) This is the format of files published on the World Wide Web.
HTML is an application of SGML; to author in HTML using SGML-based authoring software,
you simply need the HTML DTD.

IGES

(Initial Graphics Exchange Specification) The IGES standard for engineering, product design,
and manufacturing drawings is one of the CALS standard graphics formats.

Internet

The Internet is a worldwide communications network originally developed by the U.S.
Department of Defense as a distributed system with no singlepoint of failure. The Internet has
seen an explosion in commercial use since the development ofeasy-to-use software for
accessing the Internet.

ISO

(International Organization for Standardization) The ISOis an industry-supported organization
that establishes worldwide standards for everything from data interchange formats to film speed
specifications.

markup

Markup is anything added to the content of the document that describes the text.

parser

A parser is a specialized software program that recognizes SGML or XML markup in a
document. A parser that reads a DTD and checks and reports on markup errors is a validating
parser. A parser can be built into an SGML or XML editor to prevent incorrect tagging and to
check whether a document contains all the required elements.

tag

In the world of SGML and XML, a tag is a marker embedded in a document that indicates the
purpose or function of the element. Each element has a beginning tag and an end tag.

54

Glossary

World Wide Web

Often referred to as WWW or the Web, this usually refers to information available on the
Internet that can be easily accessed with software usually called a “browser.” Organizations
publish their information on the Web in a format known as HTML; this information is usually
referred to as their “home page” or “web site”.

XSLT

(eXtended Style Sheet transformations) Style sheets language for XML documents that is itself
a dialect of XML.

55

	Writing Documentation Using DocBook
	Table of Contents
	List of Tables
	Chapter 1. Introduction
	1.1. About this Booklet
	1.2. Why DocBook?
	1.3. Your World View
	1.4. Markup based on content

	Chapter 2. Getting started
	2.1. Presentation of the Tools
	2.2. The Old Way: the DocBooktools
	2.3. The New Way: XSLTProc and FOP
	2.4. My First DocBook File
	2.5. Introducing the Style Sheets

	Chapter 3. Basic notions
	3.1. Anatomy of a DocBook Tag
	3.2. The Structure of a DocBook File

	Chapter 4. The Document Type Declaration
	4.1. Using Entities for Shared Text
	4.2. Using Entities to Include Other files
	4.3. Identifying files with formal public IDs
	4.4. Using Marked Sections to Handle Conditional Content

	Chapter 5. Meta Information
	Chapter 6. Lists
	6.1. The simplelist
	6.2. The itemizedlist
	6.3. The orderedlist
	6.4. The variablelist
	6.5. The segmentedlist
	6.6. qandaset
	6.7. Procedures

	Chapter 7. Tables
	Chapter 8. Graphics
	Chapter 9. Links
	Chapter 10. Describing the Application's Interface
	10.1. Examples
	10.2. GUI Interface Elements
	10.3. Command Line Elements
	10.4. Describing an API

	Chapter 11. Miscellaneous Useful Tags
	11.1. Labelling Tags
	11.2. Formatting Tags
	11.3. Warnings, Tips, and Notes

	Chapter 12. Where to Go Next
	12.1. DocBook Resources

	Appendix A. Licence
	A.1. Free Documentation Licence

	Appendix B. Emacs PSGML mode tips
	Glossary
	ASCII
	ANSI
	attribute
	CCITT Group 4
	CITIS
	CGM
	DSSSL
	DTD
	EDI
	element
	element declaration
	entity
	entity declaration
	FOSI
	HTML
	IGES
	Internet
	ISO
	markup
	parser
	tag
	World Wide Web
	XSLT

